Barbiturates Block Sodium and Potassium Conductance Increases in Voltage-Clamped Lobster Axons

نویسنده

  • M. P. Blaustein
چکیده

Sodium pentobarbital and sodium thiopental decrease both the peak initial (Na) and late steady-state (K) currents and reduce the maximum sodium and potassium conductance increases in voltage-clamped lobster giant axons. These barbiturates also slow the rate at which the sodium conductance turns on, and shift the normalized sodium conductance vs. voltage curves in the direction of depolarization along the voltage axis. Since pentobarbital (pK(a) = 8.0) blocks the action potential more effectively at pH 8.5 than at pH 6.7, the anionic form of the drug appears to be active. The data suggest that these drugs affect the axon membrane directly, rather than secondarily through effects on intermediary metabolism. It is suggested that penetration of the lipid layer of the membrane by the nonpolar portion of the barbiturate molecules may cause the decrease in membrane conductances, while electrostatic interactions involving the anionic group on the barbiturate, divalent cations, and "fixed charges" in the membrane could account for the slowing of the rate of sodium conductance turn-on and the shift of the normalized conductance curves along the voltage axis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Action of Certain Tropine Esters on Voltage-Clamped Lobster Axon

Tropine p-tolylacetate (TPTA) and its quaternary analogue, tropine p-tolylacetate methiodide (TPTA MeI) decrease the early transient (Na) and late (K) currents in the voltage-clamped lobster giant axon. These agents, which block the nerve action potential, reduce the maximum Na and K conductance increases associated with membrane depolarization. They also slow the rate at which the sodium condu...

متن کامل

The Action of Certain Polyvalent Cations on the Voltage-Clamped Lobster Axon

Calcium appears to be an essential participant in axon excitation processes. Many other polyvalent metal ions have calcium-like actions on axons. We have used the voltage-clamped lobster giant axon to test the effect of several of these cations on the position of the peak initial (sodium) and steady-state (potassium) conductance vs. voltage curves on the voltage axis as well as on the rate para...

متن کامل

Selective modification of sodium channel gating in lobster axons by 2, 4, 6-trinitrophenol: Evidence for two inactivation mechanisms

Trinitrophernol (TNP) selectively alters the sodium conductance system of lobster giant axons as measured in current clamp and voltage clamp experiments using the double sucrose gap technique. TNP has no measurable effect on potassium currents but reversibly prolongs the time-course of sodium currents during maintained depolarizations over the full voltage range of observable currents. Action p...

متن کامل

Anesthetic and Calcium Action in the Voltage Clamped Squid Giant Axon

Changes in spike configuration and in the inward and outward currents of voltage-clamped axons agree in indicating that the increases in permeability to sodium and potassium ions during activity are depressed by procaine and cocaine and augmented by calcium. At low levels of depolarization, the effect of the multivalent ion is similar to that of the local anesthetics, in keeping with their simi...

متن کامل

Tetrodotoxin Blockage of Sodium Conductance Increase in Lobster Giant Axons

Previous studies suggested that tetrodotoxin, a poison from the puffer fish, blocks conduction of nerve and muscle through its rather selective inhibition of the sodium-carrying mechanism. In order to verify this hypothesis, observations have been made of sodium and potassium currents in the lobster giant axons treated with tetrodotoxin by means of the sucrose-gap voltage-clamp technique. Tetro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 51  شماره 

صفحات  -

تاریخ انتشار 1968